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ANOTHER LAW FOR 3-METABELIAN GROUPS
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Abstract. We show that [z, y]−1[z, x]−1[y, x]−1[z, y][z, x][y, x] = 1 is another
defining law for the variety of 3-metabelian groups.
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A group G is defined to be metabelian if [G′, G′] is the trivial subgroup and is
defined to be 3-metabelian if all of its three generator subgroups are metabelian.
In 1956, Neumann [7] gave an example of a group that is 3-metabelian but is not
metabelian. In 1961, Macdonald [4], among other results, obtained information about
the structure of 3-metabelian groups and observed that such groups satisfy the law
[x, y ; x, z] = 1. In 1962, Macdonald [5] proved as a special case of Theorem 7 in his
paper that any group that satisfies [x, y ; x, z] = 1 is 3-metabelian, and hence this law
defines the variety of 3-metabelian groups. Of related interest, in 1964, Bachmuth and
Lewin [1] proved that the law [x, y, z][y, z, x][z, x, y] = 1 also defines the variety of
3-metabelian groups. Macdonald [6] was aware of this last result and proved, also in
1964, that the law [x, y ; y, z][y, z ; z, x][z, x ; x, y] = 1 is another law that defines the
variety of 3-metabelian groups. We will use Macdonald’s results to prove our result. The
reader will find a discussion of these results and definitions for unexplained notation
and terminology in Neumann’s book [8].

The notation W (x, y, z) for [z, y]−1[z, x]−1[y, x]−1[z, y][z, x][y, x] was introduced
by Jackson, Gaglione and Spellman for expository convenience in [2] and used more
extensively in [3]. In those papers, the following three properties of W (x, y, z) were
used: for G any group and x, y, z any elements of G,

[z, y, x] = ([y, x, z]−1)[z,x][z,y]W (x, y, z)[z, x, y][y,x],

W (x, y, z) = [z, y ; z, x][z, y ; y, x][z,x][z, x ; y, x] and

W (x, y, z) = [z, x ; y, x][z,y][z, y ; y, x][z, y ; z, x][y,x].

Jackson et al. were also aware of other identities, such as (W (y, x, z))[y,x] =
(W (x, y, z))−1

, W (x, y, z) = (W (y, z, x))[z,x][y,x] and W (x, x, z) = 1, but did not use
or publish these.

THEOREM. The variety of groups defined by the law W (x, y, z) =1 is the variety of
3-metabelian groups.
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Proof. Permuting variable names when necessary, and using the law [x, y ; x, z] = 1
from Macdonald’s 1962 paper [5], the commutators [x, y], [x, z] and [y, z] commute
with one another in any 3-metabelian group. Since W (x, y, z) is defined to be
[z, y]−1[z, x]−1[y, x]−1[z, y][z, x][y, x], it is easy to see that W (x, y, z) = 1 for any
elements x, y and z of a 3-metabelian group.

To see that any group that satisfies the law W (x, y, z) = 1 is 3-metabelian, we
will use a result from Macdonald’s 1964 paper [6]. It is proved there that the
law [x, y ; y, z][y, z ; z, x][z, x ; x, y] = 1 defines the variety of 3-metabelian groups.
We will show for any group G and arbitrary elements x, y and z in G that
[x, y ; y, z][y, z ; z, x][z, x ; x, y] = 1 if W (x, y, z) = 1.

Using W (x, y, z) = 1, we see that

[z, y]−1[z, x]−1[y, x]−1 = [y, x]−1[z, x]−1[z, y]−1.

Using this and the commutator identity [a, b] = [b, a]−1, we obtain

[y, z][z, x]−1[x, y] = [x, y][z, x]−1[y, z]. (1)

We next observe that [x, y ; y, z][y, z ; z, x][z, x ; x, y] first expands by obvious
substitutions to

(
[x, y]−1[y, z]−1[x, y][y, z]

) (
[y, z]−1[z, x]−1[y, z][z, x]

) (
[z, x]−1[x, y]−1[z, x][x, y]

)
,

which reduces with obvious cancellations to

[x, y]−1[y, z]−1[x, y][z, x]−1[y, z][x, y]−1[z, x][x, y]. (2)

We then use equation (1) to substitute [y, z][z, x]−1[x, y] for the product of the third,
fourth and fifth commutator factors in equation (2). We obtain

[x, y ; y, z][y, z ; z, x][z, x ; x, y]

= [x, y]−1[y, z]−1 (
[x, y][z, x]−1[y, z]

)
[x, y]−1[z, x][x, y]

= [x, y]−1[y, z]−1 (
[y, z][z, x]−1[x, y]

)
[x, y]−1[z, x][x, y],

which then easily reduces to 1. �
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